

Deliverable Report

Deliverable Title:

New alloys produced for HPDC process

Deliverable No.	Deliverable 4.3
Deliverable nature	Demonstrator
Work Package (WP)	WP4
Task	Task 4.1
Dissemination level ¹	Public
Number of pages	11
Keywords	HPDC, aluminium alloys
Authors	Ruggero Zambelli (Raffmetal)
Contributors	Manel da Silva (Eurecat), Claudio Mus (Endurance)
Due date of deliverable	August 31 st 2022
Actual submission date	August 23 rd , 2022

Technical References

Project acronym	SALEMA
Project full title	Substitution of Critical Raw Materials on Aluminium Alloys for electrical vehicles
Call	H2020-SC5-2020-2
Grant number	101003785
Project website	salemaproject.eu
Coordinator	Fundacion Eurecat

- PP = Restricted to other programme participants (including the Commission Services)
- RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003785

¹ PU = Public

Document history

V	Date	Author (Affiliation)	Actions& Approvals
V1	27.05.2022	Manel da Silva (Eurecat)	Template with proposal of content
V2	05.08.2022	Ruggero Zambelli (Raffmetal)	First draft and compilation
V2	15 19.08.2022	Manel da Silva (Eurecat) Claudio Mus (Endurance)	Review
Final	23.08.2022	Hannah Arpke (Eurecat)	Finalisation and preparation for submission

Summary

This document describes the method followed by RAFF to industrially produce a significant quantity of partially recycled HPDC alloys with low CRM content following the methodology developed in WP3, using scrap supplied by COMET and the micro-additives selected in WP1.

New low-silicon and Si-free HPDC alloys will also be produced with small variations in the alloying elements, within the composition ranges outlined in WP2.

The substitution of critical raw materials (CRM) by converting scrap and commonly available materials as the main source of alloying elements, in the production of high performance aluminium alloys for electric vehicles is one of the main objectives of the SALEMA project.

Thanks to the study of the effects of micro-additives and their combinations in alloys in WP1, the design of new HPDC alloys in WP2, the selection of end-of-life types of scrap, with a high CRM content, indicated by COMET and the study and adaptation of the melting production processes developed in WP3, has made it possible to identify and produce about 1 ton. of:

- 6 different variants of partially recycled alloys with low CRM content;
- 6 different variants of newly developed low CRM content alloys;

All 12 variants of high performance alloys will be analyzed and tested to determine their performance, their sliding and solidification properties required to create the demonstrators identified in the project.

Deliverable 4.1 should be a guide to consider in the supply of partially recycled and low CRM aluminium alloys in ingots for the HPDC manufacturing process.

Disclaimer

This publication reflects only the author's view. The Agency and the European Commission are not responsible for any use that may be made of the information it contains.

Abbreviations

Abbreviation / Acronyms	Description
WP	Work Package
WPL	Work Package Leader
LIBS	Laser-induced breakdown spectroscopy
ROI	Region of interest
CCD	Charge-coupled device
GUI	Graphical user-interface
WEEE	Waste from electrical and electronic equipment
SVM	Support Vector Machines
XRT	X-rays transmission

Table of contents

Technic	al References1
Docum	ent history 2
Summa	ry2
Disclain	ner3
Abbrev	ations3
Table o	f contents
List	of tables
List	of figures 4
1. Int	roduction and Background5
1.1.	Objectives of task and deliverable5
2. Alle	by production5
2.1.	Selection of the different alloy
2.2.	Alloy production process
2.3.	Alloy quality certification
3. Coi	nclusions and Outlook

List of tables

Table 1: Chemical composition of the 12 variants selected for further development within HPDC process 6

List of figures

Figure 1: Pictures of the AlSi10MnMg0,3 pallets produced for the different alloy variants- from left to right	
Variant1 – Variant2 – Variant3	6
Figure 2: Pictures of the AlSi10MnMg0,2 pallets produced for the different alloy variants	7
Figure 3: Pictures of the AlSi8MnMg0,3 pallets produced for the different alloy variants	7
Figure 4: Inspection certificate 3.1 for the different AlSi10MnMg0,3 alloy variants	8
Figure 5: Inspection certificate 3.1 for the different AlSi10MnMg0,3 alloy variants	9
Figure 6: Inspection certificate 3.1 for the different AlSi10MnMg0,2 alloy variants	9
Figure 7: Inspection certificate 3.1 for the different AlSi10MnMg0,2 alloy variants	. 10
Figure 8: Inspection certificate 3.1 for the different AlSi8MnMg0,3 alloy variants	. 10
Figure 9: Inspection certificate 3.1 for the different AlSi8MnMg0,3 alloy variants	. 11

1. Introduction and Background

In WP4 of SALEMA project, the pilots regarding HPDC will be implemented and the new HPDC alloys validated. It is a WP deboted to the assessment of the new alloys developed within the project, by manufacturing and characterizing the final properties of two HPDC demonstrators with important mechanical requirements produced in two pilot plants implemented in industrial sites.

Task 4.1 consists of the production of new partially recycled and low CRM content aluminium alloys for HPDC process. It will be used the scrap provided by COMET and the micro-additions selected in WP1 and it will be followed the methodology developed in WP3.

- Production of 3 different variants of AlSi10MnMg0.2 alloy with higher level of some impurities than the standard alloy
- Production of 3 different variants of AlSi10MnMg0.3 alloy with higher level of some impurities than the standard alloy
- Production of 4 different variants of a newly developed AlSi8MnMg alloy
- Production of 2 different variants of a newly developed AlMg3 alloy

This task of WP4 will produce and provide the raw material required to perform the rest of the tasks of the WP.

1.1. Objectives of task and deliverable

The objective of this first task of WP4 is to produce industrially a significant amount of material (about 1 Tn) of the SALEMA alloys developed in WP1 and WP2 to validate their performance during the whole WP. The present document is a collection of information regarding the production of these alloys, the demonstrators that correspond to Deliverable 4.3

2. Alloy production

2.1. Selection of the different alloy

Considering the results obtained in the alloy development activities of WP1 and WP2, a total of 12 alloy variants (Table 1) were selected for further analysis and validation for HPDC process.

AlSi10MnMg0.3	Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Pb	Sn	Ti	Со
Variant 1	9-11,5	0-0,2	0-0,03	0,45-0,65	0,25-0,35	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
Variant 2	9-11,5	0-0,2	0,05-0,1	0,45-0,65	0,25-0,35	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
Variant 3	9-11,5	0-0,2	0,05-0,1	0,45-0,65	0,25-0,35	0-0,03	0-0,03	0,1-0,15	0-0,03	0-0,03	0,05-0,15	
AlSi10MnMg0.2												
Variant 1	9-11,5	0-0,2	0-0,03	0,45-0,65	0,15-0,25	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
Variant 2	9-11,5	0,2-0,3	0-0,03	0,45-0,65	0,15-0,25	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
Variant 3	9-11,5	0,2-0,3	0,05-0,1	0,6-0,8	0,15-0,25	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
AlSi8MnMg0.3												
Variant 1	7,5-8	0-0,2	0-0,03	0,6-0,7	0,15-0,25	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
Variant 2	7,5-8	0-0,2	0-0,03	0,6-0,7	0,25-0,35	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
Variant 4	8,5-9	0-0,2	0,2-0,3	0,6-0,7	0,15-0,25	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	
Variant 4	8,5-9	0-0,2	0,2-0,3	0,6-0,7	0,25-0,35	0-0,03	0-0,03	0-0,07	0-0,03	0-0,03	0,05-0,15	

AIMg												
Variant 1	0,2-0,3	0-0,15	0-0,05	0,8-1,1	2,6-2,8	0-0,03	0-0,03	0-0,08	0-0,03	0-0,03	0-0,1	0,3-0,4
Variant 2	0,2-0,3	0-0,15	0-0,05	0,9-1,2	2,1-2,3	0-0,03	0-0,03	0-0,08	0-0,03	0-0,03	0-0,1	0,3-0,4

Table 1: Chemical composition of the 12 variants selected for further development within HPDC process

2.2. Alloy production process

About 1 Ton of each alloy variant was produced in format of ingots of 8 kg, that were all put together in a pallet of about 1 Ton. in order to be delivered to Eurecat to conduct the tests of Task 4.2. In **Error! Reference source not found.** are presented pictures taken to the ingots produced for each variant. Variants of the same alloy were produced and delivered to Eurecat all together, following the same order of Table 1.

Figure 1: Pictures of the AlSi10MnMg0,3 pallets produced for the different alloy variants- from left to right Variant1 – Variant2 – Variant3

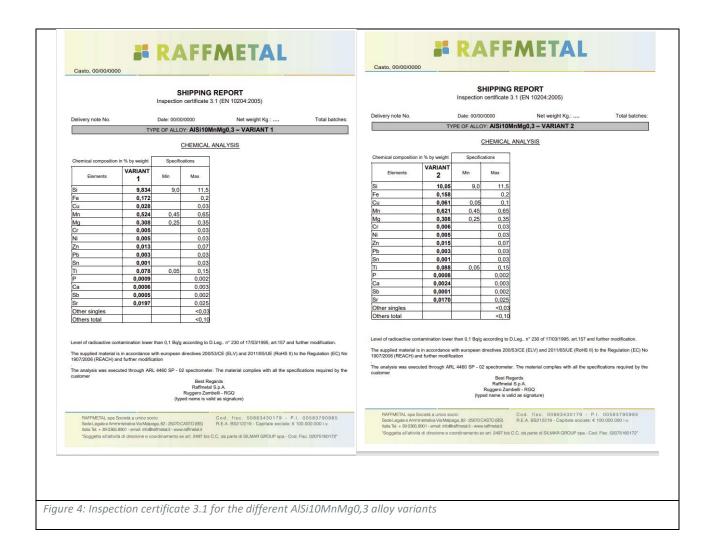
New alloys produced for HPDC process

23-Aug-22

Figure 2: Pictures of the AlSi10MnMg0,2 pallets produced for the different alloy variants

Figure 3: Pictures of the AlSi8MnMg0,3 pallets produced for the different alloy variants

The weights of the single pallet are

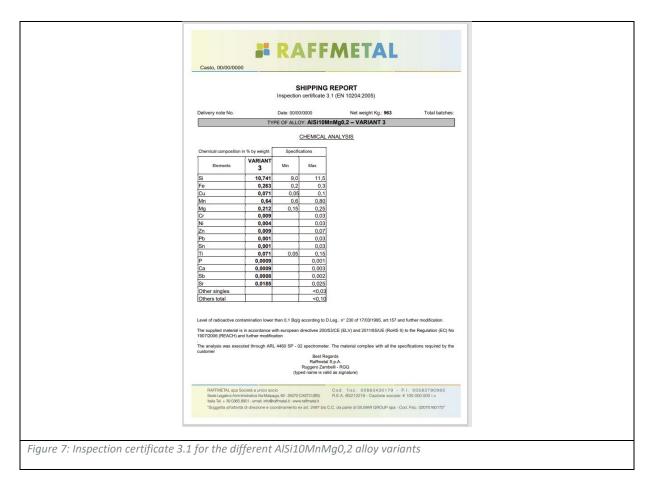

AlSi10MnMg0,3		Variant 3: 963 Kg	Variant 2: 961 Kg
Variant 1: 960 Kg	AlSi10MnMg0,2		Variant 3: 965 Kg
Variant 2: 951 Kg	Variant 1: 962 Kg	AlSi8MnMg0,3	Variant 4: 962 Kg
Variant 3: 961 Kg	Variant 2: 962 Kg	Variant 1: 965 Kg	

2.3. Alloy quality certification

Raffmetal control the composition of each of their produced batch following their quality control procedure. In the figure 2 the product quality certificates for each alloy variant produced are shown in a shipping report in according to *Inspection certificate 3.1* (EN 10204:2005).

New alloys produced for HPDC process

23-Aug-22


					Casto, 00/00/000	0					
				3.1 (EN 10204:2005)		SHIPPING REPORT Inspection certificate 3.1 (EN 10204.2005)					
Delivery note No.		Date: 00/00		Net weight Kg.: 962 Total batches:	Delivery note No.		Date: 00/00	0000	Net weight Kg .: 962	Total batches	
	TYP	PE OF ALLO	Y: AISI10N	InMg0,2 – VARIANT 1	Derivery note No.	TV			Ig0.2 - VARIANT 2	Total Datches	
			CHEMICAL	ANALYSIS				CHEMICAL AN			
Chemical composition	in % by weight	Specific	cations								
Elements	VARIANT	Min	Max		Chemical composition	in % by weight	Specific				
Si	10,541	9.0	11,5		Elements	2	Min	Max			
Fe	0,145	0,0	0,2		Si	10,101	9,0	11,5			
Cu	0,011		0,03		Fe	0,231	0,2	0,3			
Mn	0,59	0,45	0,65		Cu	0,014		0,03			
Mg	0,156	0,15	0,25		Mn	0,617	0,45	0,65			
Cr	0,005		0,03		Mg Cr	0,236	0,15	0,25			
Ni	0,005		0,03		Ni	0,003		0,03			
Zn Pb	0,008		0,07		Zn	0,009		0,07			
Sn	0,002		0,03		Pb	0,002		0.03			
Ti	0,001	0.05			Sn	0,001		0,03			
P	0.0005	0,00	0.001		Ti	0,097	0,05	0,15			
Ca	0,0006		0,003		P	0,0008		0,001			
Sb	0,0005		0,002		Ca	0,0009		0,003			
Sr	0,0243		0,025		Sb	0,0005		0,002			
Other singles			<0,03		Sr Other singles	0,0203	-	<0.025			
Others total			<0,10		Others total			<0,03			
The supplied material is 1907/2006 (REACH) ar	s in accordance w nd further modifica	vith european ation . 4460 SP - 0	directives 200/)2 spectromete Best Re Raffmetai Ruggero Zam	I S.p.A.	The supplied material i 1907/2006 (REACH) a	s in accordance v nd further modific	with european action L 4460 SP - 0	directives 200/53/0	A. - RGQ	the Regulation (EC) N	
RAFFMETAL spa S Sede Legale e Amm Italia Tel. + 39 0365J "Soggetta all'attivita	rinistrativa Via Malpa 8901 - email: info@ra	ga, 82 - 25070 I affmetal.it - www	w.raffmetal.it	Cod. filsc. 00863430179 - P.I. 00583790985 R.E.A. B8212219 - Capitale sociale: € 100.000.00 i.v. C.C. da parte di SILMAR GROUP spa - Cod. Fisc. 02075160172*	RAFFMETAL spa S Sede Legale e Arm Italia Tel. + 39 0365. "Soggetta all'attivit	inistrativa Via Malpi 8901 - email: info@	aga, 82 - 25070 (rafimetal.it - www	CASTO (BS) R. craffmetal.it	od. fisc. 00863430179 - P.I. EA BS212219 - Capitale sociale: € 1 da parte di SILMAR GROUP spa - Cod.	00.000.000 i.v.	

23-Aug-22

Casto, 00/00/0000	_			Casto, 00/00/000	0		_			
	Inspe	SHIPPING ction certificate 3	REPORT 3.1 (EN 10204:2005)		SHIPPING REPORT Inspection certificate 3.1 (EN 10204-2005)					
Delivery note No.	Date:	00/00/0000	Net weight Kg.: 965 Total batches:	Delivery note No.		Date: 00/00/000	00	Net weight Kg.: 961	Total batches:	
	TYPE OF	ALLOY: AISI8M	inMg0,3 – VARIANT 1		т	YPE OF ALLOY:	AlSi8MnM	/Ig0,3 – VARIANT 2		
		CHEMICAL	ANALYSIS			CHE	EMICAL AN	ALYSIS		
Chemical composition in %	by weight Sp	ecifications		Chemical composition	in % by weight	Specification	ns			
Elements	ARIANT	Max		Elements	VARIANT		Max			
Si		7,5 8,5			2	31. 11				
Fe	0,153	0,2		Si	7,969	7,5	8,5			
Cu	0,011	0,03		Cu	0,017		0,03			
Mn		0,6 0,7		Mn	0,688	0,6	0,7			
Mg Cr	0,214 0	,15 0,25 0.03		Mg	0,271	0,25	0,35			
Ni	0,005	0,03		Cr	0,006		0,03			
Zn	0,017	0.07		Ni	0,005		0,03			
Pb	0,003	0,03		Zn	0,014		0.07			
Sn	0,001	0,03		Sn	0,003		0.03			
TI		,05 0,15		Ti	0,131	0,05	0,15			
P Ca	0,0007	0,001		P	0,0009		0,001			
Sb	0,0008	0,003		Ca	0,0006		0,003			
Sr	0,0105	0,002		Sb	0,0001		0,002			
Other singles		<0,03		Sr	0,0215		0.025			
Others total		<0,10		Other singles Others total	-		<0.03			
	ccordance with euro		0.Leg n° 230 of 17/03/1995, art.157 and further modification. 53/CE (ELV) and 2011/65/UE (RoHS II) to the Regulation (EC) No		in accordance	with european direc		eg n° 230 of 17/03/1995, art.157 and fu CE (ELV) and 2011/65/UE (RoHS II) to		
The analysis was executed to customer	through ARL 4460 S	P - 02 spectromete	r. The material complies with all the specifications required by the	The analysis was even	uted through AR	L 4460 SP - 02 an	ectrometer T	he material complies with all the specif	ications required by the	
customer		Best Re Raffmetal Ruggero Zam (typed name is val	S.p.A. ibelli - RGQ	customer		Rug	Best Regar Raffmetal S. ggero Zambel name is valid a	ds p.A. li - RGQ		
RAFFMETAL spa Societ Sode Legale e Amministra Italia Tel. + 39 0365/8901 - "Soggetta all'attività di d	ativa Via Malpaga, 82 - 2 - email: info@raffmetai.it	- www.taffmetail.it	Cod. fisc. 00863430179 - P.I. 00583790985 R.E.A. BS212219 - Capitale sociale: € 100.000.000 i.v. C.C. ds parte di SILMAR GROUP spa - Cod. Fisc. 02075160172'	RAFFMETAL spa S Sede Lagale e Amm Italia Tel. + 39 0365J "Soggetta all'attivita	inistrativa Via Malp 3901 - email: info@	aga, 82 - 25070 CAST raifmetal.it - www.raffr	FO (BS) F metal.it	Cod. fisc. 00863430179 - P.I. R.E.A. BS212219 - Capitale sociale: € 11 . da parte di SILMAR GROUP spa - Cod.	00.000.000 i.v.	

23-Aug-22

		SHIPPING nspection certificate	SHIPPING REPORT Inspection certificate 3.1 (EN 10204:2005)						
Delivery note No.	0	Date: 00/00/0000	Net weight Kg.: 965 Total batches:	Delivery note No.		Date: 00/00/00		Net weight Kg.: 962	Total batches
	116				T	YPE OF ALLOY:	AlSi8MnM	/Ig0,3 - VARIANT 4	
		CHEMICAL	ANALYSIS			CH	EMICAL AN	ALYSIS	
Chemical composition	n in % by weight	Specifications	Chemical composition	in % by weight	Specificatio	ns			
Elements	VARIANT	Min Max			VARIANT				
and a second second	3	308430		Elements	4		Max		
Si Fe	9,169	8,5 9,5 0,2		Si	9,235	8,5	9,5		
Cu	0,017	0,2 0,3		Cu	0,183	0.2	0.2		
Mn	0,682	0,6 0,7		Mn	0,696	0,6	0,7		
Mg	0,231	0,15 0,25 0.03		Mg	0,294	0,25	0,35		
Ni	0,005	0,03		Cr	0,005		0,03		
Zn	0,022	0,07		Zn	0,004	-	0.03		
Pb	0,003	0,03		Pb	0,003		0,03		
Sn	0,001	0,03		Sn	0,001		0,03		
Ti	0,071	0,05 0,15 0,001		Ti	0,09	0,05	0,15		
Са	0,0007	0,003		Ca	0,0007		0,001		
Sb	0,0001	0,002		Sb	0,0001		0,002		
Sr	0,0185	0,025		Sr	0,0175		0,025		
Other singles Others total	1.	<0,03		Other singles			<0,03		
Others total		<0,10		Others total			<0,10		
			D.Leg., n° 230 of 17/03/1995, art.157 and further modification. 53/CE (ELV) and 2011/65/UE (RoHS II) to the Regulation (EC) No					eg n° 230 of 17/03/1995, art.157 and fu	
1907/2006 (REACH) a			SSICE (ELV) and 2011/05/DE (RORS II) to the Regulation (EC) No	The supplied material i 1907/2006 (REACH) a	is in accordance v ind further modific	with european dire ation	ctives 200/53/	CE (ELV) and 2011/65/UE (RoHS II) to	the Regulation (EC) N
The analysis was exe	cuted through ARL 4	460 SP - 02 spectrometer	r. The material complies with all the specifications required by the		uted through AR	L 4460 SP - 02 sp	ectrometer. T	he material complies with all the specifi	cations required by th
customer		customer			Best Regar	ds			
				Ru	Raffmetal S.				
		(typed name is va	lid as signature)			(typed i	name is valid a	as signature)	
RAFEMETAL sna	Società a unico socio		Cod. fisc. 00863430179 - P.I. 00583790985	RAFFMETAL spa S	Conietà a unico en	nia	-	Cod. fisc. 00863430179 - P.I.	00583790985
Sede Legale e Amr	ninistrativa Via Malpaga	, 82 - 25070 CASTO (BS)	R.E.A. BS212219 - Capitale sociale: € 100.000 000 i.v.	Sede Legale e Amm	ninistrativa Via Malpi	aga, 82 - 25070 CAS	FO (BS) F	R.E.A. BS212219 - Capitale sociale: € 10	
		netal.it - www.raffmetal.it dinamento ex art. 2497 bis	C.C. da parte di SILMAR GROUP spa - Cod. Fisc. 02075160172*	Italia Tel. + 39 0365. "Soggetta all'attivit				da parte di SILMAR GROUP spa - Cod. I	Fisc. 02075160172*

3. Conclusions and Outlook

A small amount (about 1 Tn each) of aluminium ingots were produced for each alloy variant selected for HPDC, that will be used for further analysis and alloy development, on the subsequent tasks of WP4.

Single lots (1 Ton.) of the 12 variants were produced following the indications of this document and were provided to EUT to perform all the analyzes and tests to determine their performance.

