

The SALEMA Project Journey: main outcomes, challenges and possibilities

Manel da Silva (EURECAT) Tutku Özen (ASAS) and Andrea Bongiovanni (Stellantis)

21st March 2024 – SALEMA FINAL EVENT

Summary

- Project introduction and video
- Scrap sorting system
- Development of HPDC SALEMA alloys
- Validation of HPDC SALEMA alloys in Shock Tower
- Alloy development and industrial validation in Hot Stamping
- Alloy development and industrial validation in extrusion
- Validation procedure of new alloys by an OEM

PROJECT GOAL

European Green Deal poses multiple challenges for the automotive industry:

- Need for new, high-performance but lightweight materials
- Decrease the dependencies on imported raw materials while creating a sustainable economy for the future

SALEMA Main objectives:

- To develop a non-CRM dependent aluminium ecosystem, by exploring 2 different approaches:
 - By **substituting primary CRMs with alternative** and commonly available elements
 - By obtaining the **CRMs elements from domestic scrap**, significantly increasing the amount of recycled material

Critical Raw Materials (CRMs) for the EU

 Aluminium is a lightweight and cost-effective material

Production of Aluminium and its alloys requires bauxite and other Critical Raw Materials (CRM), such as Si and Mg

• FINAL VIDEO

Summary

- Project introduction and video
- Scrap sorting system
- Development of HPDC SALEMA alloys
- Validation of HPDC SALEMA alloys in Shock Tower
- Alloy development and industrial validation in Hot Stamping
- Alloy development and industrial validation in extrusion
- Validation procedure of new alloys by an OEM

SCRAP SORTING SYSTEM

Objectives

 Adapt PICKIT sorting prototype to separate postconsumer scraps based on their alloying elements with LIBS.

Results

 Successfully produced high-quality lots of 1xxx, 2xxx, 3xxx, 5xxx & 6xxx for industrial validation with SALEMA's partners

Two complementary approaches:

Multi-output regression models:

=> Chemical content estimation

 INPUT
 OUTPUT

 Elemental content:
 Si

 Fe
 Cu
 Mn
 Mg
 Zn
 Al

 7.1%
 0.3%
 0.1%
 0.1%
 0.3%
 0.1%
 92.0%

=> Decision for sorting

Summary

- Project introduction and video
- Scrap sorting system
- Development of HPDC SALEMA alloys
- Validation of HPDC SALEMA alloys in Shock Tower
- Alloy development and industrial validation in Hot Stamping
- Alloy development and industrial validation in extrusion
- Validation procedure of new alloys by an OEM

HPDC ALLOY DEVELOPMENT

n=5	%Si	% Fe	%Mn	%Cu	%Zn	%Ті	%Mg
EN AB-43500	9.0-11.5	<0.2	0.4-0.8	<0.03	<0.07	<0.15	0.15-0.6
1	9.89	0.16	0.5	< 0.03	<0.03	0.03	0.29
2	9.9	0.16	0.5	0.07	<0.03	0.03	0.29
3	9.81	0.17	0.5	0.13	<0.03	0.03	0.29
4	9.9	0.17	0.5	0.13	0.11	0.03	0.29
5	9.78	0.19	0.51	0.14	0.2	0.03	0.3
6	10.28	0.14	0.58	0.03	<0.03	0.06	0.16
7	10.4	0.21	0.58	0.03	<0.03	0.06	0.16
8	10.39	0.25	0.58	0.03	<0.03	0.06	0.16
9	10.3	0.26	0.61	0.03	<0.03	0.06	0.16
10	10.37	0.26	0.63	0.03	<0.03	0.06	0.16
11	10.32	0.14	0.56	0.03	<0.03	0.06	0.17
12	10.26	0.18	0.62	0.07	<0.03	0.07	0.17
13	10.27	0.21	0.6	0.06	<0.03	0.06	0.16
14	10.31	0.25	0.59	0.11	<0.03	0.06	0.16
15	10.42	0.29	0.6	0.12	<0.03	0.06	0.16

HPDC ALLOY DEVELOPMENT

Fluidity test result for 1st to 5th specimens

Alloy variant number	R _p [Mpa]	R _m [Mpa]	A ₂₅ [%]
1	92 ± 6	169 ± 4	5.9 ± 0.4
2	101 ± 7	177±5	5.9±1
3	98±4	165 ± 16	3.8±2.1
4	91±2	173±9	5.2 ± 1.3
5	105 ± 4	161 ± 27	3 ± 2.1

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

HPDC ALLOY DEVELOPMENT

300

innovation programme under grant agreement No 101003785.

HPDC ALLOYS WITH REDUCED CRM CONTENT

Conceptual area	Characteristic of phenomenon to be modelled	Category of model
CRM content	Criticality Index	Properly developed
	Fluidity (as the inverse of viscosity)	Thermo-Calc Software
	Solidification shrinkage	+ elaboration
Castability	Slag/dross formation tendency	+ elaboration
	Die soldering tendency	+ elaboration
	Hot tearing tendency	+ elaboration

Hot Tearing

→ TFR (Terminal Freezing Range): 95 to 100% of solidification

Criticality Index 0,30 0.50

HPDC ALLOYS WITH REDUCED CRM CONTENT

HPDC ALLOYS WITH REDUCED CRM CONTENT

Summary

- Project introduction and video
- Scrap sorting system
- Development of HPDC SALEMA alloys
- Validation of HPDC SALEMA alloys in Shock Tower
- Alloy development and industrial validation in Hot Stamping
- Alloy development and industrial validation in extrusion
- Validation procedure of new alloys by an OEM

F state (casted)

After HT

Rp0,2 = 133 MPa Rm = 268 MPa A = 6,8 %

T7: 480ºC/1h +air cooling + 230ºC/2h Rp0,2 = 129MPa <u>Rm</u> = 200MPa

A = 12,7%

AlSi10MnMg

	Measured – Variant 6	Inspire - AlSi9MgMn
Latent heat (J/kg)	714825	417000
Liquidus temperature (ºC)	599,8	590
Solidus temperature (°C)	589,8	550

AlSi8MnMg

	Measured – Variant 7	Inspire - AlSi9MgMn
Latent heat (J/kg)	677129	417000
Liquidus temperature (ºC)	599,0	590
Solidus temperature (ºC)	588,6	550

AIMg2

	Measured – Variant 12	Inspire – AlMg3
Latent heat (J/kg)	612828	400000
Liquidus temperature (ºC)	664,3	640
Solidus temperature (ºC)	636,7	590

Shock tower (EDERTEK): Geometry and mesh

Gravity

Shock tower (EDERTEK): Thermal conductivity, viscosity and density were obtained from InspireCast data base (AISi9MgMn). All the other properties required by the software were determined experimentally from parts produced with the alloy variant.

innovation programme under grant agreement No 101003785.

AlMg2

Rp=115MPa

Rm = 205 MPa

A = 10% (mean

value, but with high dispersion)

Mechanical properties (tensile test) AlSi10MnMg Standard AlSi10MnMgFe0,3 AlSi8MnMg (variant 1) (Variant6) Rp0,2 = 133 MPaRp0,2 = 137 MPaF state (casted) Rm = 264 MPaRm = 268 MPa A = 6%A = 6,8 % T7: 480ºC/1h

After HT

project has received	
vation programme	project has received
	vation programme

funding from the European Union's Horizon 2020 research and The inno under grant agreement No 101003785.

+air cooling

+230ºC/2h

Rp0,2 = 129MPa

Rm = 200MPa

A = 12,7%

IVIg

Cu

HPDC	TOTAL Shock Tower Baseline	TOTAL Shock Tower Variant 4	TOTAL Shock Tower Variant 6	TOTAL Shock Tower Variant 7	TOTAL Shock Tower Varian 12
Abiotic depletion	2,69E-03	2,34E-05	1,03E-05	2,04E-05	1,05E-04
Abiotic lepletion (fossil fuels)	8,18E+01	4,08E+01	2,89E+01	3,75E+01	7,21E+01
Global warming (GWP100a)	7,33E+00	3,15E+00	1,89E+00	2,80E+00	6,30E+00
Ozone layer lepletion (ODP	5,02E-07	1,87E-07	1,72E-07	1,82E-07	2,33E-07
luman toxicity	5,51E+00	2,18E+00	1,22E+00	1,92E+00	5,64E+00
Fresh water iquatic ecotox.	2,66E+01	7,88E+00	3,15E+00	6,84E+00	2,17E+01
Marine aquatic ecotoxicity	2,52E+04	8,64E+03	4,20E+03	7,47E+03	1,98E+04
Terrestrial ecotoxicity	1,53E-02	1,01E-02	5,91E-03	8,99E-03	1,27E-01
Photochemical oxidation	2,37E-03	9,23E-04	4,88E-04	8,02E-04	2,00E-03
Acidification	3,93E-02	1,60E-02	9,22E-03	1,42E-02	3,36E-02
Eutrophication	1,38E-02	6,48E-03	4,68E-03	5,98E-03	1,13E-02
	GWP	57,1%	74,2%	61,8%	14,0%
					Со

Summary

- Project introduction and video
- Scrap sorting system
- Development of HPDC SALEMA alloys
- Validation of HPDC SALEMA alloys in Shock Tower
- Alloy development and industrial validation in Hot Stamping
- Alloy development and industrial validation in extrusion
- Validation procedure of new alloys by an OEM

				-	100 m	-	-		and the second
		%Si	% Fe	%Cu	%Mn	%Mg	%Cr	Ti	%Zn
	6181A (T4)	0.85	0.29	0.13	0.30	0.76	<0.03	<0.03	0.06
Alloy	Variant	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
6181A	Tipo0 (50 % recycled)	0,89	0,21	0,09	0,01	0,69	0,01	0,02	0,02
6181A	Tipo1 (70% recycled)	1	0,3	0,19	0,28	0,8	0,02	0,07	0,03
6181A	Tipo2 (85% recycled)	1,1	0,35	0,19	0,3	0,84	0,02	0,08	0,03
			11	1	11	11		- Alter	-
		%Si	% Fe	%Cu	%Mn	%Mg	%Cr	Ti	%Zn
	5754 (EN-573-3)	0.25	0.40	0.1	0.5	2.6-3.6	0.3	0.2	0.15
Alloy	Variant	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
5754	Tipo1 (65% recycled)	0,29	0,31	0,08	0,21	2,88	0,03	0,02	0,03
5754	Tipo2 (80% recycled)	0,32	0,38	0,07	0,24	2,91	0,04	0,03	0,03
		_				-		1 N	See 1

Tensile Properties

COLD FORMING ALLOYS

	Rp [MPa]	Rm [MPa]	A%	
5754 - Type1	97	210	22.5	
5754 - Type2	100	212	22.3	
6181A - type0	136	252	21	
6181A - type1	163	276	24	
6181A -type2	172	282	24	

HOT FORMING ALLOYS

	Rp [MPa]	Rm [MPa]	A%	
6181A - type0	287	345	18.0	
6181A - type1	287	346	16.4	
6181A -type2	290	345	18.0	
6111	301	376	17	10

Formability Parameters

Dir.	Rp0.2 [MPa]	Rm [MPa]	Ag [%]	A50 [%]	n	r	Ē	Δr
57541	Type 1							
0°	101 ± 2	215 ± 1	16.0 ± 0.7	19.5 ± -	0.29 ± 0.01	0.58 ± 0.03	1.1.1.1	
45°	95±1	206±1	20.0 ± 0.3	23.3 ± 0.8	0.28 ± 0.01	0.86 ± 0.02	0.75	-0.2
90°	97 ± 1	209±0	20.2 ± 1.6	25.0 ± 1.2	0.27 ± 0.00	0.71 ± 0.01	1.	12.00
5754 t	ype 2							
0º	105 ± 0	219 ± 2	17.2 ± 1.0	19.4 ± 1.1	0.28 ± 0.00	0.61 ± 0.01	1.000	12.2
45⁰	97 ± 1	209 ± 2	20.9 ± 1.2	24.8 ± 0.9	0.27 ± 0.00	0.89 ± 0.01	0.77	-0.2
90º	99±1	210±0	19.1 ± 0.4	22.7 ± -	0.27 ± 0.00	0.71 ± 0.01	31.1	1.0
	Pp0 2	Pm	Ag	450				
Dir.	[MPa]	[MPa]	Ag [%]	[%]	n	r	ř	Δr
6181A	Type 0							
02	127 ± 1	211 ± 3	15.9 ± 1.0	18.1 ± 1.3	0.22 ± 0.01	0.60 ± 0.04		
		170 1 3	15.3 ± 0.9	-	0.23 ± 0.01	0.73 ± 0.07	0.76	0.06
45⁰	100 ± 3	170±2	10.0 - 0.0					
45º 90º	100 ± 3 129 ± 1	170 ± 2 230 ± 3	17.3 ± 0.3	-	0.25 ± 0.01	0.98 ± 0.07		
45º 90º 6181A	100 ± 3 129 ± 1 Type 1	170 ± 2 230 ± 3	17.3±0.3	*	0.25 ± 0.01	0.98 ± 0.07		
45º 90º 6181A 0º	100 ± 3 129 ± 1 Type 1 125 ± 4	170 ± 2 230 ± 3 203 ± 2	17.3 ± 0.3	- 19.4 ± 0.1	0.25 ± 0.01 0.21 ± 0.01	0.98 ± 0.07 0.70 ± 0.06		
45º 90º 6181A 0º 45º	100 ± 3 129 ± 1 Type 1 125 ± 4 127 ± 4	170 ± 2 230 ± 3 203 ± 2 215 ± 7	17.3 ± 0.3 17.0 ± 0.6 15.4 ± 4.6	- 19.4 ± 0.1 19.6 ± 5.5	0.25 ± 0.01 0.21 ± 0.01 0.24 ± 0.01	0.98 ± 0.07 0.70 ± 0.06 0.52 ± 0.03	0.56	0.10
45° 90° 6181A 0° 45° 90°	100 ± 3 129 ± 1 Type 1 125 ± 4 127 ± 4 127 ± 3	$ \begin{array}{r} 170 \pm 2 \\ 230 \pm 3 \\ \hline 203 \pm 2 \\ 215 \pm 7 \\ 219 \pm 3 \\ \end{array} $	17.3 ± 0.3 17.0 ± 0.6 15.4 ± 4.6 18.3 ± 0.8	- 19.4 ± 0.1 19.6 ± 5.5 -	$\begin{array}{c} 0.25 \pm 0.01 \\ \\ 0.21 \pm 0.01 \\ \\ 0.24 \pm 0.01 \\ \\ 0.25 \pm 0.01 \end{array}$	$\begin{array}{c} 0.98 \pm 0.07 \\ \\ 0.70 \pm 0.06 \\ \\ 0.52 \pm 0.03 \\ \\ 0.52 \pm 0.01 \end{array}$	0.56	0.10
45° 90° 6181A 0° 45° 90° 6181A	100 ± 3 129 ± 1 Type 1 125 ± 4 127 ± 4 127 ± 3 Type 2	$ \begin{array}{r} 170 \pm 2 \\ 230 \pm 3 \\ \hline 203 \pm 2 \\ 215 \pm 7 \\ 219 \pm 3 \\ \end{array} $	17.3 ± 0.3 17.0 ± 0.6 15.4 ± 4.6 18.3 ± 0.8	- 19.4 ± 0.1 19.6 ± 5.5 -	$\begin{array}{c} 0.25 \pm 0.01 \\ \\ 0.21 \pm 0.01 \\ \\ 0.24 \pm 0.01 \\ \\ 0.25 \pm 0.01 \end{array}$	$\begin{array}{c} 0.98 \pm 0.07 \\ 0.70 \pm 0.06 \\ 0.52 \pm 0.03 \\ 0.52 \pm 0.01 \end{array}$	0.56	0.10
45° 90° 6181A 0° 45° 90° 6181A 0°	100 ± 3 129 ± 1 Type 1 125 ± 4 127 ± 4 127 ± 3 Type 2 137 ± 1	$ \begin{array}{r} 170 \pm 2 \\ 230 \pm 3 \\ \hline 203 \pm 2 \\ 215 \pm 7 \\ 219 \pm 3 \\ \hline 239 \pm 2 \\ \end{array} $	17.3 ± 0.3 17.0 ± 0.6 15.4 ± 4.6 18.3 ± 0.8 17.1 ± 0.6	- 19.4 ± 0.1 19.6 ± 5.5 -	$\begin{array}{c} 0.25 \pm 0.01 \\ \\ 0.21 \pm 0.01 \\ \\ 0.24 \pm 0.01 \\ \\ 0.25 \pm 0.01 \end{array}$	0.98 ± 0.07 0.70 ± 0.06 0.52 ± 0.03 0.52 ± 0.01 0.69 ± 0.03	0.56	0.10
45° 90° 6181A 0° 45° 90° 6181A 0° 45°	100 ± 3 129 ± 1 Type 1 125 ± 4 127 ± 4 127 ± 3 Type 2 137 ± 1 131 ± 2	$ \begin{array}{r} 170 \pm 2 \\ 230 \pm 3 \\ \hline 203 \pm 2 \\ 215 \pm 7 \\ 219 \pm 3 \\ \hline 239 \pm 2 \\ 234 \pm 2 \\ \end{array} $	17.3 ± 0.3 17.0 ± 0.6 15.4 ± 4.6 18.3 ± 0.8 17.1 ± 0.6 21.3 ± 1.3	- 19.4 ± 0.1 19.6 ± 5.5 - 24.5 ± 2.0	$\begin{array}{c} 0.25 \pm 0.01 \\ \\ 0.21 \pm 0.01 \\ \\ 0.24 \pm 0.01 \\ \\ 0.25 \pm 0.01 \\ \\ 0.25 \pm 0.01 \\ \\ 0.25 \pm 0.01 \end{array}$	$\begin{array}{c} 0.98 \pm 0.07 \\ \hline 0.70 \pm 0.06 \\ \hline 0.52 \pm 0.03 \\ \hline 0.52 \pm 0.01 \\ \hline \end{array}$ $\begin{array}{c} 0.69 \pm 0.03 \\ \hline 0.42 \pm 0.04 \end{array}$	0.56	0.10

EMF

SR

Essential Work of

Fracture

Flgure 3.8: Test geometry and methodology for determination of the Essential Work of Fracture.

Figure 3.10: EWF results for 5754 variants

INDUSTRIAL VALIDATION IN HOT STAMPING

• PROJECT TARGET

o Use of aluminum with high recycle content

- 6111 85%
- 6181A 85%

Alloy	Rp [MPa]	Rm (MPa)	A [%]
6181A T4	110-140	205-240	12 a 23
6181A T6	220-310	260-375	4 a 13
6111 T4	150-180	270-290	20-26
6111 T6	250-310	360-390	8-14

• Process implementation in the current Assets.

INDUSTRIAL VALIDATION IN HOT STAMPING

PROCESS SIMULATION

EURECAT – GESTAMP LABORATORY TEST

TENSILE TEST FRICTION TEST 300 Alloy 6181A AA6181 Engineering stress - strain, at strain rate 0.1, 1, 10 1/s 520°C 0,1s-1 520°C 1s-1 250 450°C 0,1s-1 True stress (MPa) 380*0 450°C 1s-1 200 250ºC_0,1s-1 -250°C_1s-1 -RT_0,1s-1 150 - RT 1s-1 100 50 50 Strain [%] (L=15mm) 0 -0,2 0,4 0.5 0.6 0,3 0.0 0.1 0.7 True strain (mm/mm) **MATERIAL DATA CARD**

GESTAMP PART PROCESS SIMULATION

EURECAT LABORATORY TEST

TOOLING DESIGN & PRODUCTION

GESTAMP TOOLING "SURFACE"

<image>

GESTAMP TOOLING MANUFACTURE

• PART PRODUCTION

Manel da Silva, PhD

Technical Coordinator

manel.dasilva@eurecat.org

Follow SALEMA on

https://salemaproject.eu/

LinkedIN: <u>www.linkedin.com/company/salemaeu/</u>

Twitter: @salemaEU

Summary

- Project introduction and video
- Scrap sorting system
- Development of HPDC SALEMA alloys
- Validation of HPDC SALEMA alloys in Shock Tower
- Alloy development and industrial validation in Hot Stamping
- Alloy development and industrial validation in extrusion
- Validation procedure of new alloys by an OEM

ALUMINIUM ALLOY EXTRUSION METHODOLOGY

		Content. wt.%										
Variant		Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Pb	Sn	Ti
	1	0.8-1.0	0-0.4	0.6-0.8	0.15-0.45	0.7-0.9	0-0.1	0.05	0-0.15	0.05	0.05	0-0.1
6111	2	0.6-0.8	0-0.4	0.7-0.9	0.15 - 0.45	0.5-0.7	0-0.1	0.05	0-0.15	0.05	0.05	0-0.1
	3	0.6-0.8	0-0.4	0.5-0.7	0.15-0.45	0.5-0.7	0-0.1	0.05	0-0.15	0.05	0.05	0-0.1
	1	0.4-0.6	0-0.35	0-0.1	0-0.15	0.5-0.7	0-0.1	0-0.05	0-0.1	0-0.05	0-0.05	0-0.1
6063	2	0.4-0.6	0-0.35	0.1-0.15	0.15-0.2	0.5-0.7	0-0.1	0-0.05	0.1-0.15	0-0.05	0-0.05	0.1-0.15
	3	0.4-0.6	0.35-0.45	0.15-0.2	0.2-0.25	0.5-0.7	0-0.1	0-0.05	0.1-0.15	0-0.03	0-0.03	0.1-0.15
6082	1	0.9-1.1	0-0.5	0-0.1	0.6-0.8	0.8-1	0-0.25	0-0.05	0-0.2	0-0.05	0-0.05	0-0.1
	2	0.9-1.1	0-0.5	0.1-0.15	0.6-0.8	0.8-1	0-0.25	0-0.05	0-0.2	0-0.05	0-0.05	0-0.1
	3	0.9-1.1	0-0.5	0.15-0.2	0.6-0.8	0.8-1	0-0.25	0-0.05	0-0.2	0-0.05	0-0.05	0.1-0.15

Rm

6111-T5

Rp0,2[MPa] Rm [Mpa] • A [%]

Static tensile test: EN ISO 6892-1:2020-05

- Crosshead speed1 = 0,75mm/min .
- croshead speed2 = 5mm/min.
- Gauge length 50mm

	Rp0,2 [MPa]	Rm [Mpa]	A [%]
V1	342,7	381,3	15,1
V2	349,7	390,0	15,6
V 3	312,7	348,7	15,5

High scrap	6063	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
contont	Variant 1	0.539	0.217	0.026	0.090	0.514	0.022	0.060	0.0400
content	Variant 2	0.507	0.227	0.120	0.167	0.512	0.025	0.117	0.1490
6063	Variant 3	0.509	0.398	0.173	0.200	0.524	0.025	0.122	0.1440

Static tensile test: EN ISO 6892-1:2020-05

- Crosshead speed1 = 0,75mm/min
- croshead speed2 = 5mm/min.
- Gauge length 50mm

	Rp0,2 [MPa]	Rm [Mpa]	A [%]
V1	235,0	253,3	11,5
V2	236,3	265,7	13,8
V3	224,0	259,0	13,3

High scrap	6082	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti
contont	Variant 1	0.939	0.223	0.043	0.626	0.824	0.071	0.223	0.0450
content	Variant 2	0.933	0.214	0.105	0.623	0.812	0.068	0.214	0.0440
6082	Variant 3	0.929	0.232	0.167	0.622	0.911	0.071	0.232	0.1440

Static tensile test: EN ISO 6892-1:2020-05

- Crosshead speed1 = 0,75mm/min
- croshead speed2 = 5mm/min.
- Gauge length 50mm

	Rp0,2 [MPa]	Rm [Mpa]	A [%]
V1	275,0	319,7	14,8
V2	297,0	332,0	14,3
V3	296,7	336,0	13,8

6082-T5

LABORATORY SCALE EXTRUSION DEMONSTRATOR

Die for 60x40x2mm hollow profile design

Hollow profiles from 3 SALEMA alloys

BILLET CASTING

Casting Facility	SALEMA Billet		US	S Analysis	S			
		and a state of the				Acceptance Criteria	Test Scope	Aging
		A REAL PROPERTY AND A REAL	R&D6063	Length: 1200 mm Diameter: ø355mm	Aluminium	ASTM 594-9 Class A	100%	Homogenization
	and the second se	and the second second	Te	st Sketch		Alloy	Total Bille	et Inspected
		22		/		6063		1
	ALC: NO DESCRIPTION				Δ		Length ar	nd Direction
				•	0		T-	360°
	and the second second					RESULT		
	ALL DESCRIPTION	A DESCRIPTION OF			A	CCEPTABLE		
		And in case of the local division of the loc						
			Heat No	Dimensions	Material	Acceptance Criteria	Test Scope	Aging
			D8.D6092	Length: 1700 mm	Aluminium	ASTM EQ4 0 Class A	100%	Homogonization
		Diameter: ø355mm	Diameter: ø355mm	Alulililiulii ASTIVI 594-9 Class A	100 /0	Tromogenization		
	and the second sec	A STREET, STRE	Te	st Sketch		Alloy	Total Bille	et Inspected
		and the second second	1	/	ļ	6082		1
				1	1		Length an	nd Direction
		-			U		T-	360°
					L			
	the second s		-			RESULT		
	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	the second se			Ar	CCEPTABLE		· · · · · · · · · · · · · · · · · · ·

DIE DESIGN

DIE MANUFACTURE

3D CAD MODEL

EXTRUSION

CHARACTERIZATION AND TESTS CONDUCTED

		SA	ALEMA	EU	PROJECT WP 6	TASK 4 SPECIMEN	l and TE	ST PL	٩N			
		BATTE	RY BOX			FRONTAL FRAME						
Test	Responsible	Amount	Profile No	Alloy	Standard	Test	Responsible	Amount	Profile N	oAlloy	Standard	
Tensile Test	ASAS	3	20213	6063	EN ISO 6892-1:2020.	Tensile Test	ASAS	3	20240	6063	EN ISO 6892-1:2020.	
Tensile Test	ASAS	3	20213	6082	EN ISO 6892-1:2020.	Tensile Test	ASAS	3	20240	6111	EN ISO 6892-1:2020.	
Tensile Test	Eurecat	3	20213	6063	400 mm specimen profile	Tensile Test	IMN	3	20240	6063	400 mm specimen profile	
Tensile Test	Eurecat	3	20213	6082	400 mm specimen profile	Tensile Test	IMN	3	20240	6111	400 mm specimen profile	
OES Composition	ASAS	2	20213	6063		OES Composition	ASAS	2	20240	6063		
OES Composition	ASAS	2	20213	6082		OES Composition	ASAS	2	20240	6111		
EDS Composition	ASAS	1	20213	6063		EBSD Composition	ASAS	1	20240	6063		
EDS Composition	ASAS	1	20213	6082		EBSD Composition	ASAS	1	20240	6111		
Optic Microstructure	ASAS	1	20213	6063		Optic Microstructure	ASAS	1	20240	6063		
Optic Microstructure	ASAS	1	20213	6082		Optic Microstructure	ASAS	1	20240	6111		
SEM Microstructure	ASAS	1	20213	6063		SEM Microstructure	ASAS	1	20240	6063		
SEM Microstructure	ASAS	1	20213	6082		SEM Microstructure	ASAS	1	20240	6111		
Bake Paint	ASAS	1	20213	6063	EN ISO 6892-1:2020 at 180°C for 20 mins	Bake Paint	ASAS	1	20240	6063	EN ISO 6892-1:2020 at 180°C for 20 mins	
Bake Paint	ASAS	1	20213	6082	EN ISO 6892-1:2020 at 180°C for 20 mins	Bake Paint	ASAS	1	20240	6111	EN ISO 6892-1:2020 at 180°C for 20 mins	
3-Point Bending	ASAS	5	20213	6063	VDA 238 - 100	3-Point Bending	ASAS	5	20240	6063	VDA 238 - 100	
3-Point Bending	ASAS	5	20213	6082	VDA 238 - 100	3-Point Bending	ASAS	5	20240	6111	VDA 238 - 100	
Tensile Test - Aniso	ASAS	3	20213	6063	EN ISO 6892-1:2020.	Tensile Test - Aniso	ASAS	3	20240	6063	EN ISO 6892-1:2020.	
Tensile Test - Aniso	ASAS	3	20213	6082	EN ISO 6892-1:2020.	Tensile Test - Aniso	ASAS	3	20240	6111	EN ISO 6892-1:2020.	
EBSD Composition	IMN	1	20213	6063		OES Composition	IMN	2	20240	6063		
EBSD Composition	IMN	1	20213	6082	400 mm specimen profile	OES Composition	IMN	2	20240	6111		
TEM Microstructure	IMN	1	20213	6063	for per alloy	EBSD Composition	IMN	1	20240	6063		
TEM Microstructure	IMN	1	20213	6082		EBSD Composition	IMN	1	20240	6111	400 mm specimen profil	
						Optic Microstructure	IMN	1	20240	6063	for per alloy	
						Optic Microstructure	IMN	1	20240	6111		
						TEM Microstructure	IMN	1	20240	6063		
						TEM Microstructure	IMN	1	20240	6111		

CHARACTERIZATION AND TESTS CONDUCTED

Bending Profile No Thickness Target Angle 1.6.6 127 3.73 120 .10 55 125 3,75 120 .10 57 123 3,71 120 10 54 126 3,76 120 126 3,72 120 3,69 170 - 3.75 120 Profile No MARBEL Target Ar 3.88 120 120 3,87 120 120 3,91 354 2.9 120 120 Profile No SALEMA Target A 120 120 Profile No SALEMA

Zeynep Tutku Ozen, PhD-c. R&D Projects and Incentives Executive tutku.ozen@asastr.com

Follow SALEMA on

https://salemaproject.eu/

LinkedIN: <u>www.linkedin.com/company/salemaeu/</u>

Twitter: @salemaEU

Summary

- Project introduction and video
- Scrap sorting system
- Development of HPDC SALEMA alloys
- Validation of HPDC SALEMA alloys in Shock Tower
- Alloy development and industrial validation in Hot Stamping
- Alloy development and industrial validation in extrusion
- Validation procedure of new alloys by an OEM

Validation procedure of new alloys by an OEM

- CRF Stellantis contribution to demo development
- CRF activities on: WP4 High Pressure Die Casting (HPDC)

○ WP5 – Cold Stamping

- WP6 Extrusion
- Industrial validation in Cold Stamping
- Industrial validation in Frontal Frame
- Key Take-Aways

Fiat Research Center (CRF)

CRF CONTRIBUTION ON DEMONSTRATORS

AUTOMOTIVE REQUIREMENTS ON STRUCTURAL COMPONENTS

- Participated in the alloy development
- Mechanical and Functional (weldability, corrosion, adhesion compatibility, etc.) properties
- Internal and International standard
- Standard alloys vs SALEMA alloys
- Comparison based on real structural component requirement

CRF ACTIVITIES ON WP 4 - 5 - 6

CORROSION RESISTANCE

- Provided mainly by Black E-Coat / Cataphoresis in automotive
 - ASTM B368 Copper-Accelerated Acetic Acid-Salt Spray (Fog) (CASS test)
 - Cataphoresis compatibility
- Weight loss differential between variants and alloys
 - ASTM G85:A3 acidified synthetic sea water testing (SWAAT test)

example:		Heat	Initial Weight	Weight after	Weight loss		
HPDC – WP4	Alloy	Treatment		168 h CASS	(g)	%	
	V4	с	122.2	113.2	9.0	7.4	
	V6	Г	119.6	109.0	10.6	8.8	
	V4	те	120.5	119.3	1.2	1.0	
	V6	10	116.5	114.3	2.2	1.9	

CRF ACTIVITIES ON WP 4 - 5 - 6

BENDING CHARACTERIZATION

- Important in wrought alloys, few examples for casting alloys in OEM requirements 0
- Stamping and Extruded SALEMA alloys Ο
- Ο

HPDC in samples and in final demo \rightarrow good behavior towards F vs HT temper

Allow	Heat Treatment	Bending VDA 238-100				
Alloy	Heat Heatment	average	st.dv			
V4	F	22.3	7.0			
	T6	58.5	0.6			
NC	F	23.1	9.9			
vo	T6	51.4	1.9			

PROJECT TARGET

- Use of aluminum with high recycle content
 - 5754 H0 temper 70 - 85%
 - 6181A T4 temper 70 - 85%
- Inner hood demonstrator (Jeep Renegade) 0
- Thickness 0,9 mm Ο
- Use the current assets in production for primary alloys Ο

• BENDABILITY VDA 238-100

• COLD FORMING: FLD

CORROSION RESISTANCE

ASTM G85:A3 (SWAAT)weight loss differential

• ASTM B368 (CASS)

cataphoresis compatibility

5754

• DEMONSTRATOR MANUFACTURING

o Mirafiori Press Shop, Mirafiori Plant, Turin, ITALY

QUALITY ASSESSMENT

No cracks in maximum deformation zones (holes) Keeps performance regardless high recycled content OK for current production

- Demonstrator Development
 - FROM: Low Pressure Die Casting (LPDC) in Maserati MC20
 - **TO**: High Pressure Die Casting (HPDC) for segment C-D car
 - Main advantages: high volume production
 - cost reduction thanks near net shape features
 - Mechanical requirements:

Rp [MPa]	Rm [Mpa]	A [%]
180	230	10

• PRODUCTION IN ENDURANCE S.P.A

X-RAY MAPPING COMPLETED

Very sound area

• MECHANICAL CHARACTERIZATION

○ **BENDING**

O HETEROGENEOUS WELDING WITH SHEETS ALLOYS

	angle [°]	st.dv
As Cast	25,1	7,5
T5	13,2	9,2
Т6	54,4	3,7

• X-RAY ANALYSIS (University of Padova, Osama Asghar – Franco Bonollo)

• FINAL ASSEMBLY HPDC – EXTRUDED

• WELDING VALIDATION

- Micrographic inspection
- o Tensile test on welding bead
- Non-Destructive Testing

INDUSTRIAL VALIDATION IN FRONTAL FRAME

- KEY TAKE-AWAYS:
 - Alloy is suitable for structural components
 - No major differences compared to primary alloys in manufacturing
 - $\odot\,$ Design tuning needed for improving crash behavior
 - Crash test missing before complete industrialization
- FURTHER DEVELOPMENT OF DEMONSTRATOR EU project
 - FLEXCRASH Improve strength and crash behavior with hybrid AM
 - **RESTORE** Remanufacturing with hybrid for another vehicle segment

Andrea Bongiovanni PhD researcher, CRF

andrea.bongiovanni@external.crf.it

Follow SALEMA on

https://salemaproject.eu/

LinkedIN: <u>www.linkedin.com/company/salemaeu/</u>

Twitter: @salemaEU